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This paper presents a new approach to the analysi .-of robustness or

sensitivity of multiloop linear feedback systems. P~f operties of

the return difference equation are examined using the concepts of

singular values, singular vectors and the spectral norm of a matrix.

A number of new tools for multiloop systems are developed which are
analogous to those for scalar Nyquist and Bode analysis, providing a

generalization of the scalar frequency-domain notions such as stability

margins and M-circles.
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S I

I. INTRODUCTION

A critical property of feedback systems is their robustness; that

is, their ability to maintain performance in the face of uncertainties.

In particular, it is important that a closed-loop system remain

stable despite differences between the model used for design and the

actual plant. These differences result from variations in

modelled parameters as well as plant elements which are either

approximated, aggregated, or ignored in the design model. The

robustness requirements of a linear feedback design are often

specified in terms of desired gain and phase margins and band-

width limitations associated with loops broken at the input to

the plant actuators( 1;, .2"). These specifications reflect in

part the classical notion of designing controllers which are

adequate for a set of plants constituting a frequency-domain

envelope of transfer functions [31 . The bandwidth limitation

provides insurance against the uncertainty which grows with

frequency due to unmodeled or aggregated high frequency dynamics.

The Nyquist or Inverse Nyquist diagram (polar plots of the loop
transfer function) provides a means of assessing stability and

robustness at a glance. For multiloop systems, scalar Nyquist

diagrams may be constructed for each loop individually providing

some measure of robustness. Unfortunately, the method may ignore

variations which simultaneously affect multiple loops.
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There are a number of other possible ways to extend the classical

frequency-domain techniques. One involves using compensation or

feedback to decouple (or approximately decouple) a multiloop system

into a set of scalar systems which may be treated with scalar

techniques (i.e., "Diagonal Dominance", Rosenbock [41 ). Another

method uses the eigenvalues of the loop transfer matrix (G(s) in

Figure 1) as a function of frequency (i.e., "Characteristic Loci",

MacFarlane, et. al. [5 "f , [6 ). While these methods provide

legitimate tools for dealing with multivariable systems, they can

lead to highly optimistic conclusions about the robustness of

multiloop feedback designs. Examples in Section III will demonstrate

this.

This paper develops an alternative view of multiloop feedback

systems which exploits the concepts of singular values, singular" "r

vectors, and the spectral norm of a matrix. ( 7j - 410  ). This
approach leads to a reliable method for analyzing the robustness

of multivarlable systems.

Section II presents a basic theorem on robustness and sensitivity

properties of linear multiloop feedback systems. Multivariable

generalizations of the scalar Nyquist, Inverse Nyqulst and Bode

analysis methods are then developed from this same result.

Two simple examples are analyzed in Section III using the tools

of Section II. As promised, the inadequacies of the existing

approaches outlined earlier will be made clear.

Section IV contains a discussion of some of the Implications of

this work.
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The goal of this paper is to focus on the analysis of robustness

and sensitivity aspects of linear multiloop feedback systems.

Some new approaches emerge which yield important insignts into

their behavior. The mathematical aspects of these topics are

fairly mundane at best, so rigor and generality are almost always

sacrificed for simplicity.

Preliminaries and Definitions

A brief discussion of singular values and vectors follows. Although

the concepts apply more generally, only square matrices will be

considered in this paper. A more thorough discussion of theser

topics may be found in rf7, - i1OL " 6 i *

The singular values oi of a complex n x n matrix A are the non-* A*
negative square roots of the eigenvalues of A A where A is the

conjugate transpose of A. Since A A is Hermitian, its eigenvalues

are real. The (right) eigenvectors vi of A A and ri of AA are

the right and left singular vectors, respectively, of A. These

may be chosen such that

or1 - Avi  , I = 1, ... n
(1)

01 _ 2'_ ... _•an

and the {ri) and {v i ) form orthonormal sets of vectors.

It is well known that

A* Rz V (2)



where R and V consist of the left and right singular vectors,

respectively, and z = diag. (02, ... , an). The decomposition

in (2) is called the singular value decomposition.

Denote

2(A) = min IAxil = al (3)

and

(A) x 1 HjAxIH = ltAII 2  on (4)

where lixil = (x*x) and I}')2 is the spectral norm.

The singular values are important in that they characterize

the effect that A has as a mapping on the magnitude of the

vectors x. The singular values also give a measure of how
"close" A is to being singular (in a parametric sense). In

fact, the quantity

Im

o
7

is known as the condition number with respect to inversion 9,

The elgenvalues of A do not in general give such Information.

If X is an eigenvalue of A, then

and it is possible for the smallest elgenvalue to be much larger

than a.



II. BASIC RESULTS

Consider identity the feedback system in Fig. 2 where G(s) is the rational

loop transfer matrix and L(s) is a perturbation matrix, nominally zero,

which represents the deviation of G(s) from the true plant. While this

deviation is unknown, there is usually some knowledge as to its size.

A reasonable measure of robustness for a feedback system is the magnitude

of the otherwise arbitrary perturbation which may be tolerated without

instability. The following theorem characterizes robustness in this way.

The "magnitude" of L(s) is taken to be the spectral norm. Only stable

perturbations are considered since no feedback design may be made robust

with respect to arbitrary unmodeled unstable poles.

Robustness theorem: Consider the perturbed system in Fig. 2 with the follow-

ing assumptions

I) G(s) and L(s) are nxn rational square matrices,

ii) det (G(s)) t 0

illi) L(s) is stable

iv) the nominal closed loop system

H = G(I+G)"

is stable.

Under these assumptions the perturbed system is stable if

(I + G(s)'' (L(s)) (5)

for all s in the classical Nyquist D-contour (defined below)

Proof:

It is well known [4] that since G is invertible

. . .. ...-.
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det(H(s)- = det (I G = (6)

where (s) is the nominal closed-loop characteristic polynomial and t (s)

is the transmission zero polynomial of G Il

For the perturbed system

det (I + G(s) -1 + L(s)) = 42(s) (7)

where *2(s) is the perturbed closed-loop characteristic polynomial and

3 (s) is the characteristic polynomial of L(s).

Let D be a large contour in the s-plane consisting of the imaginary axis from -JR to
+jR, together with a semicircle of radius R in the right half-plane. The

radius R is chosen large enough so that all finite roots of *2(s) have

magnitude less than R.

Let the contour r be the image of D under the map 0l(s) det (I + G(s)' .

Since H is stable, it follows from the principle of the argument that ro

will not encircle the origin.

Define the map

y(q,s) = *l(s) det (I + G(s) "1 + qL(s)), q real (8)

and let y(q,s) map D into the Contour r(q) for fixed q, ocqfl. The map

y(q,s) may be written as

S(q,s)" (S)*3(s) + qel(s) + + q0 n(s)
3(s)

j4(qs) (9)
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Clearly, since r(o) = r0, it does not encircle the origin. Since the roots

of *4 are algebraic functions of q, they are continuous in q [12] . Thus

the only way that the perturbed contour r(1) can encircle the origin is for

det (I + G(s) "1 + qL(s)) = 0 (10)

for some s in D and some q on the interval o<_q<1. (Recall that *3(s) has

no riqht half-plane roots). When (10) is satisfied then a (I + G" + qL)

must also be zero. However, as a consequence of (5)

S (I + G"- 1 + qL) >_o (I + G- 1 )  q _O(L)

> (I + G- ) - c(L)

>0 (11)

Thus r(q) does not encircle the origin for ocq_1. In particular, the
perturbed contour r(1) does not encircle the origin, and the perturbed closed-

loop system is stable.

Similar theorems hold for additive rather than multiplicative perturbations

(with I + G substituted for I + G- ) as well as a number of other configurations.

This theorem points out the importance of singular values. In particular,

the smallest singular value o(I + G(jw) " ) gives a reliable frequency-

dependent measure of robustness. Stability is guaranteed for all perturbations

whose spectral norm is less than a. As will be seen in the examples, eigen-

values do not give a similarly reliable measure.

The singular values also have useful graphical interpretations. Consider

the dyadic expansion

N-1 I + G"1 IT n a r v
1 - z-1 r" "

(12)
O1 < ..- <_n



where the oi, ri and vi are the singular values, and left and right singular

vectors, respectively of I + G"I. This is an alternative form of the sing-

ular value decomposition in equation (2).

It has been shown [5] that the eigenvalues and eigenvectors of a rational

matrix are continuous (through generally not rational) functions of

frequency. Since singular values and vectors are just special cases,

ai(jw), ri(jw) and vi(jw) are also continuous functions of w.

Since

(I+ ) =+ v.r.* (13)

the values 1/ajj1iw) and I/o n(jw) give the maximum and minimum possible

magnitude responses to an input sinusoid at frequency w. Eigenvalues give

no such information. In this sense, a plot of these singular values vs.
frequency may be thought of as a multivariable generalization of the Bode

gain plot. Plots of this type will be referred to as a-plots.

Another useful graphical interpretation analogous to the scalar Inverse

Nyquist diagram may be constructed by noting that

G"  . air vir= arv 1  - I

* *

- iriv i -i vivi

Z(airi - vi i

E8 1 g~v 1 (14)igivi (4

where igi or - vi with 0i real and 11gi11 1 for all i.

(The gi s do not necessarily form an orthonormal set.)

*: The quantities in (14) at some frequency wo are related as in diagram in

Fig. 3a. Since vi is of unit length a complex plane may be constructed as

-9-



in Fig. 3b, to lie in the plane formed by the triangle of vioiri and eigi.

Define zi to be the complex number at the point of the triangle as in Fig. 3c.

Then, by rotating the complex plane with the triangle as a function of

frequency, a zi(jw) may be obtained which is a continuous function of w

(Fig. 3d). This allows the important quantities in (13) and (14), that is,

the ci and ai to be represented in convenient graphical form. As noted in

Fig. 3d, there is an ambiguity to z. depending nn which side the plane is viewed.

(To be more precise, the zi represent a multivalued function of s which could

be defined on appropriate Riemann sheets. However, this will be ignored.)

The zi may be calculated by finding the roots of the quadratic equation

zi + (1 + 2a 2)z + = 0 (15)

By plotting the zi(jW) ci = 1,...m) for frequencies of interest a plot

analogous to the scalar Inverse Nyquist plot is generated. While phase

does not have the conventional meaning on these plots, the more important

notion of distance from the critical point preserves its importance.

These plots will be referred to as z-plots.

Concepts such as M-circles are also obvious in this context. The minimum

value of M is given by

= max (I/Ol(i)Mm  I

Sinilar results nay be for obtained additive 9erturbations by working with

I + G rather than I + G-1 . In this case a dianram is generated which is

analogous to the scalar Nyquist diagram. A number of other configurations

may be handled as well.



Note that singular values offer no encirclement condition to test for

right half-plane poles. Another test must be made for absolute stability

but this presents no obstacle as many simple techniques exist for doing

this. Once stability is determined the various approaches presented in

this Section may be used to reliably analyze robustness.



III. EXAMPLES

Two simple examples are presented and analyzed using the approaches

developed in the previous section. For the purpose of comparison,

the methods of loop-breaking, direct eigenvalue analysis of G, and

diagonalization by compensation are also used. The advantage of

the interpretation of robustness given in this paper is clearly

illustrated.

The first example is an oscillator with open loop poles at ±10j

and both closed loop poles at -1. There are no transmission

zeros The loop transfer function is

Fs-100 10(s+l)

G(s) 1 (16)
s +100

_-10(s+1) S-100 -

By closing either loop (the system is symmetric) as in Figure 4,

the transfer function for the other loop is

g(s) = S

which indicates - db gain margin in both directions and 900 phase

margin in each loop (with the other closed). This is very misleading,

however.

The z-plot for this example is shown in Figure 5. It may appear

somewhat peculiar, since it is not a plot of a rational function.



The important feature is the proximity of the plot to the critical

point, indicating a lack of robustness.

The apparent discrepency between these two robustness indications

can be easily understood by considering a diagonal perturbation

k 0

L :(17)

!0 k2

where k1 and k2 are constants.

Then regions of stability and instability may be plotted in the

(k1, k2) plane as has been done in Figure 6. The open loop point

corresponds to k1 = k= -1 and nominal closed loop point corresponds

to k= 2 = 0. Breaking each loop individually examines stability

along the kI, k2 axes where robustness is good, but misses the close

unstable regions caused by simultaneous changes in k and k2. Thus,

* single loop analysis is not a reliable way of testing robustness.

The second example is a two dimensional feedback system with open-

loop poles at -1 and -2 and no transmission zeroes.

The loop transfer matrix is

-47s + 2 56s

G(S) (18)
(s+l)(s+2)

L..-42s 50s + 2

4-13-
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Assume that identity feedback is used, with closed-loop poles at

-2 and -4. This system may be diagonalized by introducing constant
compensation. Let

7 8

6 7

and

7 -8
V U_ (0

-6 7

Then letting

V1  0

6 VGU =,(21)

0 2
S+2

the system may be rearranged so that

It G(I +G)1

= UGV(I + UGV)
=^ UGI+) (22)
UG + G)] V

This yields a diagonal system that may be analyzed by scalar
methods. In particular under the assumption of identity feedback



represents the new loop transfer matrix. Because U and V

represent a similarity transformation, the diagonal elements of

a are also the eigenvalues of G so that the decoupling or dominance

approach and eigenvalue or characteristic loci approach would gen-

erate the same Nyquist or Inverse Nyquist plot shown in Figure 7.
Only a single locus is shown since the contours of 1/(s + 1) and

2/(s + 2) are identical. The tempting conclusion that might be

reached from these plots is that the feedback system is emminently

robust with apparent margins of ± - db in gain and 90+ in phase.

The closed-loop pole locations would seem to support this.

This conclusion, however, would be wrong. The z-plot for I + G "1

is shown in Figure 8 and there is clearly a serious lack of robust-

ness. The (kI , k2 ) - plane stability plot for this example is
shown in Figure 9. Neither the diagonal dominance nor eigenvalue

approaches indicate the close proximity of an unstable region.

This failure can be attributed to two causes.

First, the eigenvalues of a matrix do not, in general, give a

reliab~e measure of its distance (in a parametric sense) from

singularity, and so computing the eigenvalues of G(s) (or I + G(s))

does not give an indication of robustness. Using eigenvalues

rather than singular values will always detect unstable regions

that lie along the k1 = k2 diagonal, but may miss regions such

as the one in Figure 9.

Second, when compensation and/or feedback is used to achieve

dominance, the "new plant" includes this compensation and feed-

back. Because of this, no reliable conclusions may be drawn from

this "new plant" concerning the robustness of the final design with

respect to variations in the actual plant. It is important to

L -15-
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evaluate robustness where there is uncertainty.

Another important property of multiloop feedback is that, unlike

scalar feedback, pole locations alone are not reliable indicators

of robustness. This was demonstrated in the last example and may

be explained as follows. Consider a state feedback problem where

the plant is controllable from each of two inputs. One input may

be used to place the poles far into the right half plane and the

other used to bring them back to the desired location. Such a

high-gain control design of "opposing" loops will be extremely

sensitive to parameter variations regardless of the nominal pole

locations.

It is interesting to examine the a-plot of H = G(I + G)' for the

second example shown in Figure 10. Recall that the singular values

of H are equal to the inverses of the singular values of I + G-1 .

There is a rather large peak in the frequency response at approxi-

mately 3 radians. This could not occur in scalar unity feedback

systems without there being a pole relatively near the imaginary

axis. It can happen in multiloop systems because of the high

gains possible without correspondingly large pole movement.
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IV.-- FURTHER COMMENTS AND CONCLUSIONS

The approach to the analysis of robustness presented here appears to yield

useful insight into the properties of multiloop feedback systems which may

provide the basis for a multivariable stability specification analogous to

gain and phase margines for scalar systems. One possible difficulty with

the approach is that it can lead to overly pessimistic views of robustness
because it considers perturbations which may not be physically possible.

This problem exists as well with gain and phase margin evaluations. Of

course, some of this difficulty can be alleviated by examining the specific

perturbations leading to instability. These may be easily computed from

equation ( 12 ). On the other hand, it might be argued that some healthy

pessimism would be refreshing in the field of multivariable linear control
research.

Although for simplicity's sake only rational transfer functions were considered

the results in this paper should extend to nonrational transfer functions. In
practical application it should be possible to use frequency response data

directly.

The results may also be extended to include nonlinear perturbations by exploiting

the general stability theory developed by Safonov [ . In this setting,

nonlinearities may be loosely viewed as linear time-invariant elements with

time-varying parameters. A mathematically more rigorous treatment of these

issues may be found in Zames( [14 [15) as well as in [13]

The results in this paper concerning dominance methods and use of characteristic

loci of the loop transfer matrix are not meant to imply that design procedures employ-

ing these methods are useless. However, simply designing "in the frequency
domain" is no guarantee that resulting controllers will have no undesirable

properties.

Multivariable diagrams such as the * and z- plots appear to be amenable to

implementation on a computer with graphic and plotting capability. Singular

-17-



values and vectors are particularly easy quantities to compute[116 • This

should facilitate their active use in multiloop feedback design procedures.

The question naturally arises concerning the implications of the singular

value approach for robust synthesis. Certainly, this appears to be a

promising area for research.
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Fig. 1 Muliloop Feedback System

Fig. 2 Perturbed System
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Fig. 4 Analysis by Loop-Breaking

Fig. 5 Example 1 z-plot
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